
1/

/ faculty of Computer Science

eindhoven university of technology

Dennis van Opzeeland

d.j.a.v.opzeeland@student.tue.nl

June 21, 2005
Eindhoven University of Technology,

The Netherlands

Assessing Correspondence between
Design and Implementation

2

1/

/ faculty of Computer Science

eindhoven university of technology

Outline
• Introduction
• What is correspondence?
• Matching of implementation pieces to design

elements
• Highlighting differences
• Case study
• Conclusion

3

1/

/ faculty of Computer Science

eindhoven university of technology

Introduction
• Correspondence:

– Similarity between design and implementation

• Correspondence vs. evolution
– Correspondence degrades if implementation

evolves but design doesn’t
– Correspondence ↓
⇒ Maintainability ↓

 ⇒ Evolution effort ↑

4

1/

/ faculty of Computer Science

eindhoven university of technology

What is correspondence?
• Expressed in terms of the model elements

– Design: classes, interfaces, ...
– Implementation: class declaration, interface

specification,...
• Mapping between design elements and implementation

elements
• Correspondence system =

!
""),|eq(,

),sim(
idIiDd

id

5

1/

/ faculty of Computer Science

eindhoven university of technology

Typical deviations from design
• Structural

– Easy to check
– Examples

• Introduction of new classifiers
• Differences in names
• Introduction of new operations and attributes
• Introduction of dependencies and associations

• Behavioral
– Hard to check
– Examples

• Incompatible message sequences
• Not all deviations are equally problematic

6

1/

/ faculty of Computer Science

eindhoven university of technology

Finding the matching
• Given:

– Set of design classifiers
– Set of implementation classifiers

• Problem:
– Find the design pieces and implementation pieces that

were meant to be “the same”
• Different approaches

– Classifier names
– Structural properties
– Package information
– Metric profile

7

1/

/ faculty of Computer Science

eindhoven university of technology

Using package information
• Heuristic:

– Existing relations between
two packages predict other
relations

• Requirements
– Development view in design
– Directory layout for source

code
– Partial matching exists

• Purpose
– Limit search space of other

methods

8

1/

/ faculty of Computer Science

eindhoven university of technology

Matching with Metric profiles (1)
• There exist correlations between

design metrics and implementation
metrics of a system

• Correlating metrics define metric
profile of a class
– Let c be a class, then

m(c)=(m1,c , ... , mn,c)
– Pairwise correlations between metrics in

design profile and implementation profile

9

1/

/ faculty of Computer Science

eindhoven university of technology

Matching with Metric Profiles (2)
• Let d be a design class and i an implementation

class
• Given metric value for design predict value for

implementation metric and compare with real
value

• The implementation class that fits best
matches to the design class

! "+=
n

nnnnn
idid |)m()m(|),sim(,1,0 ##$

10

1/

/ faculty of Computer Science

eindhoven university of technology

Case study
• Characteristics

– Industrial case
• Firmware for DVD recorder

– Design
• UML 1.4
• 346 classes

– Implementation
• C++
• 777 classes
• Lines of Code: 2,558,216

• Approach:
– Initial matching based on names
– Empirical analysis for metric profile approach

11

1/

/ faculty of Computer Science

eindhoven university of technology

Correlating metrics

0.816Data abstr. coupl.Coupl. objects
0.883Depth of Inh. treeDepth of inh. tree

0.184# Attributes# Attributes
0.223# Priv. operations# Priv. operations
0.829Depth of inh. tree# Ops. inherited
0.889# Protected ops.# Ops. inherited

0.924# Ops. inherited# Ops. inherited
Corr. CoefficientImplementationDesign

For all correlation coefficient measures, the significance level p < 0.01

12

1/

/ faculty of Computer Science

eindhoven university of technology

Case study results
• Classification of deviations from design found

– Introduction of (private/protected)
attributes and operations

– Introduction of new classes
(decomposition of design classes)

– Unused dependencies
– Changes in inheritance tree

13

1/

/ faculty of Computer Science

eindhoven university of technology

Conclusions
• Matching approaches

– Matching based on names:
• 77 % of design matched
• ? % of implementation matched

– Matching based on Metric
Profiles

• 0 % of design matched
• 0 % of implementation matched

– Metric Profile useful for highlighting deviations

14

1/

/ faculty of Computer Science

eindhoven university of technology

Combine strategies
• None of the approaches

defines a complete matching
• Find initial matching using a

good approach
• Cluster classifiers using

package information
• Apply other matching

approaches on clusters
• If everything else fails:

human intelligence

Matching on
Classnames

Matching on
Package info

Matching on
structure

Manual
Improvement

Find
differences

Visualize

Matching on
Metric Profiles

15

1/

/ faculty of Computer Science

eindhoven university of technology

Visualization of differences
• Given a mapping, finding differences is quite

straightforward
• Visualization using

MetricView
• Overlay diagrams

A B

C
D

I

A

1

*

B

«
c
a
l l
»

J

16

1/

/ faculty of Computer Science

eindhoven university of technology

17

1/

/ faculty of Computer Science

eindhoven university of technology

Further work
• What can be done to prevent

correspondence issues?
• How can correspondence be established?
• What is the impact of correspondence

issues?
• How much correspondence is needed?
• What about clustering

