
Languages for Large
Productivity Gains:

What Will they Look Like?
(Was: My Foray Into Declarative Languages)

Yannis Smaragdakis
 University of Athens

“Declarative”?

 high-level
 what, not how
 no control-flow, no side-effects
 specifications, not algorithms

2Yannis Smaragdakis
University of Athens

“denoting high-level programming languages
which can be used to solve problems without
requiring the programmer to specify an exact

procedure to be followed.”

What Am I Doing in This
Space?

 Before 2008: nearly nothing
 mixin layers, generics and meta-programming,

domain-specific languages, virtual memory,
caching algorithms, FC++, automatic
partitioning, middleware semantics, automatic
testing, symbolic execution, …

 Very little to do with declarative languages
 barring minor consulting for LogicBlox Inc.

3Yannis Smaragdakis
University of Athens

Since Then…

 Doop: declarative static analysis (for Java and
now C/C++)

 DeAL: logic-based language for computation over
heap structures during GC time

 PQL: declarative, fully parallelizable language
over a Java heap

 Academic liaison for LogicBlox
 Lots of other research expressed declaratively

 also domain-specific work

4Yannis Smaragdakis
University of Athens

Sample of Declarative Data Points

5Yannis Smaragdakis
University of Athens

LogicBlox

 Company developing Datalog(-uesque) platform
 language, optimizer (think: JIT), DB
 all applications developed declaratively (even UI)

 Datalog: first-order logic + recursion
 expressiveness-wise: superset of all prior
 captures PTIME complexity, Turing-complete with

simple extensions
 declarative: order of rules or clauses irrelevant (!Prolog)

 LogicBlox recently sold for ~$150M
 most value in applications: majority of top retailers

worldwide have deployed LogicBlox apps
8Yannis Smaragdakis

University of Athens

Static Analysis in Datalog
[OOPSLA’09, PLDI’10, POPL’11, OOPSLA’13, PLDI’13, PLDI’14, SAS’16, …]

 Datalog-based analysis frameworks for Java, C, C++

 2-3K logical rules (20-25KLoC)
 Very high performance (often 10x over prior work)
 Sophisticated, very rich set of analyses

 subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity,
call-site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type
filtering, precise exception analysis

 High completeness: full semantic complexity of Java
 jvm initialization, reflection analysis, threads, reference queues, native methods, class

initialization, finalization, cast checking, assignment compatibility

9

http://doop.program-analysis.org

Yannis Smaragdakis
University of Athens

Back To Our Group
(Language Design) …

10Yannis Smaragdakis
University of Athens

Quotes From
“Blue. No! Yellow!”

 “[W]e've passed the point of diminishing returns. No
future language will give us the factor of 10 advantage
that assembler gave us over binary. No future language
will give us 50%, or 20%, or even 10% reduction in
workload”

 Question 1: can we get large productivity
increases?

 Also “assembler over binary”???
Sorry, I don’t buy it.

11Yannis Smaragdakis
University of Athens

Quotes From
“Blue. No! Yellow!”

 “it is difficult to see past the rut that we seem to be in
today. … research takes 10/20 years to hit practice”

 Question 2: are there designs that offer large
productivity gains now?

 “all programming languages seem very similar to each
other. They all have variables, and arrays, a few loop
constructs, functions, and some arithmetic constructs.
Sure, some languages have fancier features like first-class
functions or coroutines…”

 Question 3: are there useful languages that have no
loop constructs, no arrays, and no functions?

12Yannis Smaragdakis
University of Athens

My Anecdotes

 Anecdote 1: developed implementation of CP
relation (for POPL’12 paper) in 1 day, vs. 2-3
weeks of failed attempts in Java

 Anecdote 2: Doop captured a very rich set of
pointer analysis algorithms with ~12 months
of development effort

 and 10x performance improvement!

13Yannis Smaragdakis
University of Athens

Revisiting the 3 Questions

24Yannis Smaragdakis
University of Athens

The Three Questions

 Question 1: can we get large productivity
increases?

 Question 2: are there designs that offer large
productivity gains now?

 Question 3: are there useful languages that
have no loop constructs, no arrays, and no
functions?

 I think you know my answers

25Yannis Smaragdakis
University of Athens

More Importantly

 We expect this story (productivity, different
design) from domain-specific languages

 What’s the common domain of
 race detection
 points-to analysis
 retail prediction applications?

26Yannis Smaragdakis
University of Athens

What Can We Learn From
This?

 Declarative languages are probably just one
part of the productivity answer

 Can we take a step back?
 Speculative, subjective “lessons” for high-

productivity languages of the future

27Yannis Smaragdakis
University of Athens

Lesson: Productivity and
Performance Tied Together

28Yannis Smaragdakis
University of Athens

Lesson: Productivity and
Performance Tied Together

 If a language can give orders-of-magnitude
improvements in productivity
 THEN
its implementation has the potential for
orders-of-magnitude improvements in
performance

 both are aspects of being abstract
 how is it possible to get productivity improvements

if one needs to specify data and algorithms
concretely, with “loops and arrays”?

29Yannis Smaragdakis
University of Athens

Lesson: Productivity and
Performance Tied Together

 Abstract languages can change the
asymptotic complexity of a program

 E.g., in Datalog:

 order of joins
 indexing
 incrementalization

30Yannis Smaragdakis
University of Athens

A(x,y) <- A(y,z), B(z,x,w), C(w,z).
C(x,y) <- A(y,w), D(w,x).
A(x,y) <- A(y,z), B(z,x,w), C(w,z).
C(x,y) <- A(y,w), D(w,x).

Lesson: Productivity and
Performance Tied Together

 Order of joins: A<-A,B,C possibly catastrophic
 A<-A,C,B better? A<-C,B,A even more
 What if no C index on z?

31Yannis Smaragdakis
University of Athens

A(x,y) <- A(y,z), B(z,x,w), C(w,z).
C(x,y) <- A(y,w), D(w,x).
A(x,y) <- A(y,z), B(z,x,w), C(w,z).
C(x,y) <- A(y,w), D(w,x).

Lesson: Productivity and
Performance Tied Together

 Joining tables is one kind of looping, recursion
is the other

 implemented as:

 Would you do this by hand? Main source of
inefficiencies in past analyses

32Yannis Smaragdakis
University of Athens

A(x,y) <- A(y,z), B(z,x,w), C(w,z).
C(x,y) <- A(y,w), D(w,x).
A(x,y) <- A(y,z), B(z,x,w), C(w,z).
C(x,y) <- A(y,w), D(w,x).

ΔA(x,y) <- ΔA(y,z), B(z,x,w), C(w,z).
ΔA(x,y) <- A(y,z), B(z,x,w), ΔC(w,z).
ΔC(x,y) <- ΔA(y,w), D(w,x).

ΔA(x,y) <- ΔA(y,z), B(z,x,w), C(w,z).
ΔA(x,y) <- A(y,z), B(z,x,w), ΔC(w,z).
ΔC(x,y) <- ΔA(y,w), D(w,x).

Lesson: Need For Firm Mental
Ground

33Yannis Smaragdakis
University of Athens

Lesson: Need For Firm Mental
Ground

 If a language can give orders-of-magnitude
improvements in productivity
 THEN
it will make it too easy to break things. The
language design should naturally keep sanity

34Yannis Smaragdakis
University of Athens

Lesson: Need for Firm Mental
Ground

 In Datalog development, the #1 sanity-
keeping feature is monotonicity

 Extra rules can only produce more results
 Everything that used to hold, still does

 though not entirely true, close enough
 Also, termination: programs will converge

 though not entirely true, close enough

35Yannis Smaragdakis
University of Athens

Lesson: Development Patterns
Change

36Yannis Smaragdakis
University of Athens

Lesson: Development Patterns
Change

 If a language can give orders-of-magnitude
improvements in productivity
 THEN
a programmer’s workflow will change fairly
radically

37Yannis Smaragdakis
University of Athens

Lesson: Development Patterns
Change

 My Datalog experience
 much easier to pick up code after a while
 much easier to develop incrementally
 debugging not trivial

 goes with performance improvement: lots of
intermediate results missed

 more time running than writing code

38Yannis Smaragdakis
University of Athens

Lesson: Need for Formal Proof

39Yannis Smaragdakis
University of Athens

Lesson: Different Balance of
Formal Reasoning and Coding

 I speculate that with high-productivity
languages:

 formal proofs will be easier
 formal proofs will be less necessary!

 Both are an outcome of “code”

40Yannis Smaragdakis
University of Athens

Conclusion: Starting From the
Three Questions

Question 1: can we get large productivity increases?

Question 2: are there designs that offer large
productivity gains now?

Question 3: are there useful languages that have no
loop constructs, no arrays, and no functions?

 I will claim “yes” on all three
 Positive instances give us glimpses of future high-

productivity languages
 let’s try to generalize!

41Yannis Smaragdakis
University of Athens

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

