

A Reference Architecture for Web Servers

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

Dept. of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1
CANADA

+1 (519) 888-4567 x 4671
{aeehassa, holt}@plg.uwaterloo.ca

ABSTRACT

A reference software architecture for a domain defines
the fundamental components of the domain and the
relations between them. Research has shown the bene-
fits of having a reference architecture for product de-
velopment, software reuse, and maintenance. Many
mature domains, such as compilers and operating sys-
tems, have well-known reference architectures.

In this paper, we present a process to derive a reference
architecture for a domain. We used this process to de-
rive a reference architecture for web servers, which is a
relatively new domain. The paper presents the map-
ping of this reference architecture to the architectures of
three open source web servers: Apache (80KLOC),
AOL-Server (164KLOC), and Jigsaw (106KLOC).

Keywords
Software architecture, reference architecture, domain
architecture, web server.

1. INTRODUCTION

Research has shown the importance of having an archi-
tecture document during the development of a software
system [15,17]. Such a document improves developers'
system understanding. It provides a building plan for
the system and reduces its maintenance cost. It pro-
vides an overview description of the system. It permits
the developer to view the major subsystems in the soft-
ware system and the relations between them. Unfortu-
nately, many software systems do not have an architec-
ture document. The cost of manually developing this

document increases with the size and the complexity of
the software system. Recently, a number of tools have
been developed to decrease this cost by helping to ex-
tract the architecture of a software system [7, 16, 20,
21]. Using these tools, reverse engineering researchers
have developed semi-automated processes to extract the
product’s architecture from available artifacts such as
the product's source code and any available documenta-
tion.

The reference architecture [4] for a domain is an archi-
tecture template for all the software systems in the do-
main. It defines the fundamental components of the
domain and the relations between these components.
The architecture for a particular product is an instance
of the reference architecture. During product develop-
ment, the product designer refines and extends the ref-
erence architecture, based on the product’s require-
ments and constraints. Recently, there has been some
work on the derivation of reference architectures for
specific domains [6]. For mature domains, the major
components and the relations between them have been
studied extensively and are well understood [12]. For
example, an operating system is understood to have
certain major subsystems such as a file system, a mem-
ory manager, a process scheduler, a network interface,
and an inter-process communication subsystem [19].
Similarly, a compiler is understood to have a scanner,
parser, semantic analyzer and a code generator subsys-
tem [17]. Many of the relations between such subsys-
tems are known and are expected to exist in the archi-
tecture of products in the same domain. For example in
the architecture of a compiler, the scanner is expected
to pass tokens to the parser.

Research has shown that a reference architecture en-
ables software reuse and reduces the development ef-
forts [9]. The different components of the reference
architecture provide a template for design and code
reuse. Software architecture analysis methods such as
SAAM [11] use a reference architecture to evaluate
alternative architectures. As new products are devel-
oped in new domains, the designers develop new sets of
concepts and names. The comparison of architecture
alternatives in new domains is hampered by the lack of
consistency among concepts and terminology. A refer-
ence architecture provides a common nomenclature
across all software systems in the same domain, this
allows the architectures of a set of products to be de-
scribed uniformly. Such uniformity establishes a com-
mon level of understanding and assists in comparing
the different architectures. The existence of a reference
architecture is useful in the reverse engineering of a
software system in the domain [18], by providing a set
of suggested subsystems and relations between them
that can be expected to exist in the investigated system.

The web server domain is an emerging domain. The
architecture of different web servers has not been stud-
ied extensively. Little has been published about the
reference architecture for web servers. Luckily, three
implementations of a web server are available online
under an open source license: Apache [3], AOLServer
[2], and Jigsaw [10]. Developed by three different or-
ganizations with distinct requirements, built using dif-
ferent development techniques, and with their source
code available online, these web servers are prime can-
didates to study in the derivation of a reference archi-
tecture. Using the architecture of these three servers
and a modest amount of web server domain knowledge,
we developed a reference architecture for web server.
We will present this reference architecture and will
show how it is mapped to the architecture of each of the
three web servers, to validate the derivation process.

2. THE WEB BROWSER DOMAIN

Web servers provide access to many features for users
such as daily news, email service, etc. A user needs a
web browser to access these features. For example,
when a user using his or her browser wants to check the
daily news, he or she enters the Uniform Resource Lo-
cator (URL) for the document that contains the daily
news, such as http://www.cnn.com/index.html. Using
the HyperText Transfer Protocol (HTTP), the browser
in turn requests the daily news from the CNN web

server. The CNN web server locates the resource that
contains the daily news and sends the daily news back
to the browser, which displays it to the user.

Figure 1 shows the interaction between the web server
software and the rest of the environment. A web server
is responsible for providing access to resources that are
under control of the operating system. The most
prominent web servers include Apache, StrongHold,
Netscape's iPlanet, and Microsoft's IIS web server [13].
The web server provides access to resources that range
from static documents, such as HTML or text, to more
dynamic resources, which are created by executing pro-
grams on the web server's machine. Java servlets and
Common Gateway Interface (CGI) are some of the
types of programs that are executed by web servers.
The clients accessing the web server are called brows-
ers. Browsers' capabilities range from simple text ori-
ented browser to graphically capable browsers. The
most prominent browsers include Netscape Navigator,
Internet Explorer, and Lynx.

Browser

Network

Operating
System

WEB
SERVER

Resouces

Programs
servlet/

CGI
Files

Figure 1: Web server in the network environment.

A web server can be thought of as the operating sys-
tem's portal to the web. It provides a façade to the op-
erating systems resources. It encapsulates the operating
system and provides the requested resources to the
browser using the functionality of the local operating
system. Web servers have similar functionality, for
example, all web servers can serve simple text files.
But each web server may have extra features based on
its design goals, for example, not all servers can serve
Java servlets. The existence of a common set of fea-
tures leads to the existence of a common reference ar-
chitecture for web servers.

3. DERIVING A REFERENCE
ARCHITECTURE

Starting from the source code of three different web
servers and no architecture documentation, we derived
a reference architecture for the web server domain. We
are not web server domain experts, and we were not
able to interview any of the developers of the systems.
Instead, we used the defining artifact of these systems:
their source code.

Kazman [11] describes a method to derive a reference
architecture for use in conducting the SAAM analysis.
Using a set of scenarios that represent the important
usages of the system, a domain expert traces the im-
plementation of the scenarios and recovers a subset of
the reference architecture. Kazman [1] acknowledges
that the derived architecture is an incomplete reference
architecture, but it is sufficient for conducting the
SAAM analysis. The derived reference architecture is
limited by the quality and the quantity of the chosen
scenarios.

We will now present a process for deriving a reference
architecture by a non-domain expert. Given a set of
implementations (such as Apache, AOLServer, and
Jigsaw), some documentation for each implementation
and some domain knowledge, our process for deriving
the reference architecture consists of these four steps:

Step 1: Derive a conceptual (as-designed) architecture
(see Figures 4, 6 & 8) for each implementation, as fol-
lows:

Step 1a: Propose a conceptual architecture for
each implementation, using domain knowl-
edge and available documentation.
Step 1b: Refine the conceptual architecture us-
ing the concrete (as implemented) architecture.

Step 2: Derive a reference architecture (see Figure 3)
using the conceptual architectures derived in step 1 as
follows:

Step 2a: Propose a reference architecture based
on domain knowledge and the common struc-
ture between the conceptual architectures.
Step 2b: Refine the reference architecture us-
ing the conceptual architectures from step 1.

Figure 2 depicts the process used for deriving the refer-
ence architecture for web servers. Step 1 was per-
formed for all three servers, creating their conceptual
architecture.

Reference Architecure for Web Servers

Conceptual
Architecture

Concrete
Architecture

Apache

Conceptual
Architecture

Concrete
Architecture

AOLServer

Conceptual
Architecture

Concrete
Architecture

Jigsaw
Figure 2: Reference architecture derivation process.

The conceptual architecture shows the system's subsys-
tems and the inter subsystem relations that are mean-
ingful to the system's developers. As we were not able
to interview the developers, we built the conceptual
architecture using available documentation and domain
knowledge that we acquired from using web serv-
ers/browsers and installing the Apache server. We used
the Portable BookShelf (PBS) tool [13] to visualize and
validate each conceptual architecture. The PBS tool
recovers the concrete architecture of the system from
the source code of the software system. The concrete
architecture shows the actual relations between the dif-
ferent subsystems according to the system's source code.
As pointed by Bowman [5], the concrete architecture is
likely to have more dependencies than the dependencies
in the conceptual architecture. We examined the unex-
pected dependency relations and revised our conceptual
architectures where appropriate. For example, if the
dependency relation was due to developer’s laziness
(from code comments) and was not essential, it was not
added to our conceptual architecture. We added rela-
tions that we missed due to features that were not
documented. We did not add relations when we were
not able to justify their existence. Using the revised
conceptual architecture and the knowledge we gained
about the web server domain, we compared the different
conceptual architectures to find common components
and common relations between components. Based on
the commonality analysis, we inferred a reference
architecture. Later we validated that each of the
architectures of each web servers had a direct mapping
back to our reference architecture for web servers.

4. WEB SERVER REFERENCE
ARCHITECTURE

Following the process presented in the previous section,
we derived the web server reference architecture, shown
in Figure 3. The reference architecture follows a pipe
and filter architecture style, as described by Shaw and

Garlan [17]. This reference architecture specifies the
data flow and the dependency between the different
subsystems. The reference architecture is composed of
seven major subsystems that are divided between two
layers: a server layer and a support layer. The server
layer contains five subsystems that are responsible for
implementing the functionality of the web server. We
will now discuss the server subsystems:

Browser

Reception

Record
Transaction

Resource
Handler

Access
Control

Request
Analysis

Operating System

Operating System Abstraction LayerUtil

Legend:
Reference
Subsystem

network
 connection

all depend on

control flow

Figure 3: Web server reference architecture.

1. The Reception subsystem interprets the re-
source request protocol, such as the HTTP pro-
tocol. It is responsible for waiting for browser
requests that arrive through the network, pars-
ing the requests, and building an internal rep-
resentation of the request so the other subsys-
tems could operate on the request without any
knowledge of the HTTP protocol. In addition,
it determines the capabilities of the browser
(such as simple text browser or graphically ca-
pable browser) and adjusts the request’s re-
sponse to match these capabilities. This sub-
system contains the logic and the data struc-
tures needed to handle multiple browser re-
quests simultaneously.

2. The Request Analyzer subsystem operates on
the internal representation of the request, built
by the Reception subsystem. This subsystem
translates the location of the resource from a
network location to local file name. For ex-

ample, a request for resource ~/index.html
could be transformed to local file
/usr/httpd/pub/webfiles/index.html. Also, this
subsystem may correct the spelling of the re-
quested resource, if it cannot find an appropri-
ate resource. For example, if the user mis-
typed index.html as indAx.html, the Request
Analyzer subsystem could correct the typing
error.

3. The Access Control subsystem enforces the ac-
cess rules employed by the server. It authenti-
cates the browsers and authorizes their access
to the requested resources. This is the subsys-
tem that requests a username and password to
access the required resources, if needed.

4. The Resource Handler subsystem determines
the type of the resource requested by the
browser, executes it and generates the re-
sponse. For example, the Resource Handler
subsystem must determine if the requested re-
source is a static file that can be sent back di-
rectly to the user or if it is a program that must
be executed to generate the response.

5. The Transaction Log subsystem records all the
requests and their result.

The support layer contains two subsystems that
provide functions that are used by the subsystems
in the upper server layer:

• The Utility subsystem contains functions that
are used by all other subsystems. It has func-
tions for manipulating strings or URLs and
many commonly used functions.

• The Operating System Abstraction Layer
(OSAL) encapsulates the operating system
specific functionality to facilitate the porting of
the server to different platforms. This layer
will not exist in a server that is designed to run
on only one platform.

In a later section, we will map the conceptual architec-
ture of the each of the three web servers to our derived
reference architecture.

5. FLEXIBILITY OF THE REFERENCE
ARCHITECTURE

To be useful a reference architecture must be flexible
enough to encompass many product architectures. We
will now list some of the ways in which our reference
architecture is flexible.

Resource Mapping Flexibility
A web server controls access to resources that are avail-
able through the local operating system. To perform its
tasks, it must map resources, which are on the opera-
tion system to resources on the web. A designer of a
web server can choose different mapping methods, such
as online or offline mapping. For online mapping, the
mapping rules are applied to the resource as it is being
served to the client. For off-line mapping, the rules are
applied ahead of time and the results of the mappings
are stored in a server cache. The online mapping is
efficient for resources that change frequently, but this
design has a higher overhead for serving resources, as
the mapping operation must be performed every time
the resource is requested. By specializing the design of
the Resource Handle and Resource Analysis subsys-
tems, the designer can create a web server to support
these two mapping alternatives. The Apache server
uses an online mapping and the Jigsaw server uses an
offline mapping.

Security Flexibility
Web server designers have many choices of security
models. The security model could range from simple
username/password to more sophisticated models based
on signed certificates. The reference architecture speci-
fies only that an access control scheme exists but the
details of the Access Control subsystem is left to the
designer’s discretion.

Concurrency Flexibility
For good response, web servers need to handle multiple
clients simultaneously. The reference architecture does
not specify how to implement this concurrency. The
product designer can choose from a number of designs
to achieve this concurrency using the reference archi-
tecture, by specializing the design of the Reception sub-
system. A multi-threaded model (Jigsaw and AOL-
Server) or a multi process model (Apache) can be used.

6. MAPPING THE CONCEPTUAL
ARCHITECTURES TO THE
REFERENCE ARCHITECTURE

The presented reference architecture is based on the
common features and functionalities in the three exam-
ined web servers. In this section, for each of the three
web servers, we provide a brief background about the
serve, a conceptual architecture diagram and a concep-
tual to reference architecture mapping diagram. The

mapping diagram shows how the architecture for the
software system can be viewed as an instance of the
reference architecture. In the mapping diagram, a
rounded-dotted box is a subsystem in the reference ar-
chitecture and a square box is a subsystem in the con-
ceptual architecture.

6.1. Apache

The Apache server (80KLOC) is the most used web
server in the Internet [13]. Apache's first release was
on April 1995. This server is being developed on the
Internet as an open source project. Developers are en-
couraged to contribute to the development of the server,
but a Core group of developers controls the architecture
of the server and the features introduced in each re-
lease. Apache’s main architect is Robert Thau. The
top-level architecture of the server has not changed for
the past five years. Apache’s development documenta-
tion indicates that no subsystems where added or re-
moved since 1995. The main design goals for the
server followed by the Core group are: speed, simplic-
ity, support for multiple platforms and ease of distrib-
uted development. We examined the source code of
release 1.3.4. All the source code of the Apache is writ-
ten in C.

The conceptual architecture of Apache, shown in Fig-
ure 4, has eight major subsystems. Execution of a re-
quest starts in the Core subsystem. The browser issues
its request using the HTTP protocol to the machine
running Apache. The Core subsystem is always waiting
for incoming requests on the machine. The Core main-
tains a pool of processes to support answering multiple
requests for different clients. Once the request is re-
ceived by the Core subsystem, a Request_rec structure
is built. This structure stores the information needed to
process the request by the other subsystems. This struc-
ture is passed to the next subsystem, the Translation
subsystem. The Translation subsystem determines the
local location of the requested resource. It spell checks
the request and corrects it, if necessary. Next, the Au-
thentication subsystem determines if the client request-
ing the resource needs to be authenticated. For exam-
ple, the Authentication subsystem may ask the user for
a username and password. The Request_rec structure
is then transferred to the Authorization subsystem,
which checks if the client is authorized to access the
requested resource. Next, the MIME type subsystem
determines the type of the requested resource. The re-
sponse for the request is generated in the Response sub-
system. Finally, the Logging subsystem records the

request and the Core subsystem sends the response back
to the browser. During the processing of the request, if
any of the subsystems encounter an error, the error is
recorded in the Request_rec structure and the structure
continues to be passed from subsystem to subsystem.

OS LayerUtil

Core

Authentication

Translation Logging

ResponseAuthorization
MIME
type

Legend: Subsystem
all depend on

control flow

Figure 4: Conceptual architecture of Apache.

The Util subsystem contains a regular expression en-
gine, and URL and string manipulation libraries. The
OS Layer abstracts many functionalities that are operat-
ing system dependent. The OS Layer has facilitated the
porting of Apache to a multitude of platforms that
range from mainframes to personal computers.

OS LayerUtil

Core

Authentication

Translation Logging

ResponseAuthorization
MIME
type

Legend: Subsystem
all depend on

control flow

Recep.

Req. Analysis

Access Ctrl. Res. Handler

Record Trans.

Util. OSAL

Reference
Subsystem

Figure 5: Conceptual to reference architecture map-
ping for Apache.

Figure 5 shows the conceptual to reference architecture
mapping for Apache. This mapping shows a good fit

between the levels of architecture. The conceptual ar-
chitecture of Apache has two more major subsystems
than the reference architecture. For example, the func-
tionality of the reference Access Control subsystem is
divided between two subsystems in Apache: the Au-
thentication and Authorization subsystems. This de-
sign decision may be due to Apache’s need to support
distributed development. By providing finer detailed
subsystems, the Apache Core group can manage the
large number of developers working on the system.

6.2. AOLServer

The AOLServer (164KLOC) is a commercial web
server developed by AOL. Originally, the server was
developed by NaviSoft, which was bought by AOL.
The NS prefix in the server’s subsystem names is an
abbreviation for NaviSoft. For example, NSPerm sub-
system stands for NaviSoft Permission subsystem.
AOLServer's first release was early 1995. The source
code of the server was open-sourced in mid-June 1999.
We examined the first open source release; release 3.0,
which did not contain any contributions from outside
sources. The architect of the server isn’t known as the
development of the server was closed until recently.
The main design goals for the server are to provide
powerful support for sites that use databases exten-
sively, and to provide extensibility using a maintainable
and safe extension language. The AOLServer uses the
Tool Command Language (TCL) as the extension lan-
guage. We examined the source code of release 3.0.
All the source code of AOLServer is written in C, ex-
cept 4 KLOC of TCL. We did not extract the TCL part
of the server.

Figure 6 shows the conceptual architecture of the AOL-
Server, which has ten subsystems. The server contains
a TCL interpreter embedded in it. As the server is
geared towards sites that use databases extensively, the
server contains a Database Interface subsystem that
provides a façade to different types of databases. The
Database Interface subsystem is used by many of the
subsystems in the server. For example, the NSPerm
subsystem could store access control information in a
database.

The Communication Driver provides an interface that
is communication protocol independent. It supports
multiple network protocols such as the Secure Socket
Layer (SSL), TCP sockets, and Unix sockets. The
Daemon-Core subsystem translates the client’s request
into an internal structure, called Conn, that is passed to

the other subsystems. The Daemon subsystem checks if
the requested resource is available. Then the NSPerm
subsystem checks the permissions on the requested re-
source and ensures authorized access to resources on
the system. The URL Handle subsystem carries out the
request and generates the response. Finally, the NSLog
subsystem records the processing of the request.

Communication
Driver

NSPerm NSLog

URL Handle

Daemon -
Core

NSThreadTCL
Interpreter

Database
Interface

UtilTimer

Figure 6: Conceptual architecture of AOLServer.

To facilitate the porting of AOLServer, the designers
supply a thread library, NSThread, which is platform
independent. AOLServer contains a Timer subsystem
that permits the developer to schedule events that are
executed at different time intervals. The Timer subsys-
tem is used to timeout connections to database servers
and to signal clean up for the cache structures used by
AOLServer.

Some of the interesting points in the conceptual to ref-
erence architecture mapping for AOLServer, shown in
Figure 7, are:

• The AOLServer design does not provide a
clear separation between the Reception and
Request Analysis subsystems.

• Support for multiple network protocols is im-
portant for the designers. This may be attrib-
uted to the commercial customer base of AOL-
Server and their needs for a server that can
support multiple network protocold, such as
the SSL protocol used for secure online com-
merce.

• The OSAL and Utility subsystems are much
richer than their equivalent in Apache. OSAL
provides a portable thread library implementa-
tion. Also, the Utility subsystem has a data-
base Interface, a Timer and a full TCL lan-
guage interpreter.

Database
InterfaceUtil

Communication
Driver

NSPerm NSLog

URL Handle

Daemon -
Core

Recep.,
Req. Analysis

Access Ctrl. Record Trans.

Res. Handler

OSAL

NSThreadTimer

Util.

TCL
Interpreter

Figure 7: Conceptual to reference architecture map-

ping for AOLServer.

6.3. Jigsaw

The Jigsaw server (106KLOC) is an experimental
server developed by the World Wide Web Consortium
(W3C). Jigsaw's first release was in May 1996. The
main architect of Jigsaw is Yves Lafon. The develop-
ment documentation of the server indicates that the
architecture of the server has not changed for the past
two and a half years. The W3C uses the server for ana-
lyzing Internet protocols and standards. The server
code is open sourced but its development is not as ac-
tive as Apache's. We examined the source code of re-
lease 2.0.1. All the source code of Jigsaw is written in
Java.

Daemon

Resource

Resouce
InFilter

Resouce
OutFilter

Protocol
Frame
InFilter

Protocol
Frame

OutFilter

Util.

Figure 8: Conceptual architecture of Jigsaw.

The conceptual architecture of Jigsaw, shown in Figure
8, has seven subsystems. The Daemon subsystem sup-

ports various protocols used to request resources on the
network. It also provides the thread pools needed to
handle multiple requests concurrently. As can be seen
in Figure 8, Jigsaw contains four types of filter subsys-
tems. A browser request passes through two filter sub-
systems before the Resource subsystem processes the
request and generates the response. The request passes
through another pair of filters after the response has
been generated. The choice of filters is based on the
resource itself and the type of the protocol used to re-
quest the resource. Jigsaw provides different levels of
filters, such as protocol and resource filters. This em-

phasis on filters may be due to the experimental nature
of the server. These filter are useful for different types
of benchmarking and for experimenting with new
phases in the request processing. As with the other
servers, there is a Utility subsystem that provides func-
tionalities that are used throughout the server.

In the conceptual to reference architecture mapping for
Jigsaw shown in Figure 9, we notice that an OSAL does
not exist. The server is developed in the Java language,
which has standard package that provides the needed
platform independent layer.

Web

Server
Main

architect
Development

type
Date of

1st
release

Code
 size

(KLOC)

Impl.
language

Arch.
stable for

(years)

Number of
conceptual
subsystems

Apache Robert Thau Open source April 1995 80 C 5 8
AOLServer Unknown Commercial May 1995 164 C & TCL - 10
Jigsaw Yves Lafon Experimental May 1996 106 Java 2.5 7

Table 1: Statistics for the different web servers.

Reference
Architecture

Apache AOLServer Jigsaw

Reception Core Communication
Driver,
Daemon-Core

Daemon

Request
Analysis

Translation

Access
Control

Authentication,
Authorization

NSPerm Protocol Frame InFilter,
Resource InFilter

Resource
Handle

MIME type,
Response

URL Handle Resource

Record
Transaction

Logging NSLog Protocol Frame OutFilter,
Resource OutFilter

Util Util Util,
DB Interface,
TCL Interpreter,
Timer

Util

OSAL OS Layer NS Thread (Java support)

Table 2: Summary of the conceptual to reference architecture mapping.

Daemon

Resource

Resouce
InFilter

Resouce
OutFilter

Protocol
Frame
InFilter

Protocol
Frame

OutFilter

Recep.,
Req. Analysis

Access Ctrl.

Res. Handler

Record Trans.

UTIL

OSAL
Util.

Figure 9: Conceptual to reference architecture map-
ping for Jigsaw.

6.4. Summary of mappings

Table 1 summarizes the characteristics of the presented
web servers. They were designed and developed by
separate organizations using various development tech-
niques and languages. The diversity of the examined
software systems indicates that our derived reference
architecture is not biased to any development technique
or organization. Examining Table 2 that summarizes
the mappings from conceptual to reference architecture
for each web server, we notice that the conceptual ar-
chitecture of each web server fits well in the reference
architecture for web servers. The main differences in
structure between the reference and conceptual archi-
tectures are some splitting and merging of subsystems
and differing numbers of support subsystems.

7. CONCLUSION

A reference architecture helps in system understanding.
It provides a standard structure to compare different
architectures in the same domain. It can be used as a
framework to assist in improving system reuse, and it
facilitates both forward and reverse engineering of
products in the domain.

This paper has presented a process for deriving a refer-
ence architecture of a domain, by a non-domain expert.
Using multiple software systems from the domain, and
some domain knowledge, we derived a reference archi-
tecture for web servers. We validated the presented
reference architecture using three open source systems:
Apache, AOLServer, and Jigsaw. Clearly, more valida-

tion of the derived reference architecture would be
beneficial and is needed. We encourage web server
developers to examine our reference architecture and
validate it against their servers. Finally, we hope that
our presented reference and conceptual architecture for
web servers will be helpful in providing a better under-
standing for the web server domain.

ACKNOWLEDGEMENTS
The concrete and conceptual architecture of the Apache
web server is based on early work done by: Octavian
Andrei Dragoi, Richard Gregory, Eric Lee, Thomas
Parry, Jean Preston, Mark Scott, and Ladan Tahvildari,
as part of CS 746G, a graduate computer science course
offered at the University of Waterloo. The authors
would like to thank Thomas Parry for his help in devel-
oping the conceptual and concrete architecture for the
Jigsaw web server, and Ivan Bowman for providing a
robust Java extractor.

References

[1] G. Abowd, J. Pitkow, R. Kazman, "Analyzing
Differences Between Internet Information Sys-
tem Software Architectures", Proceedings of
ICC '96, Dallas, TX, June 1996.

[2] The AOLServer server homepage. Available
online at http://www.aolserver.com

[3] The Apache server homepage. Available
online at http://www.apache.org/httpd.html

[4] J. Bergey, G. Campbell, P. Clements, S.
Cohen, L. Jones, R. Krut, L. Northrop, and D.
Smith. Second DoD Product Line Practice
Workshop Report. Technical Report
CMU/SEI-99-TR-015, Carnegie Mellon Uni-
versity, October 1999.

[5] Ivan T. Bowman, R. C. Holt, and Neil V.
Brewster. Linux as a Case Study: Its Extracted
Software Architecture. In Proceedings of
ICSE’99, Los Angeles, May 1999.

[6] W. Eixelsberger, M. Ogris, H. Gall, and B.
Bellay. Software architecture recovery of a
program family. In Proceedings of ICSE '98,
Kyoto, Japan, Apr. 1998.

[7] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K.
Kontogiannis, H. A. Muller, J. Mylopoulos, S.

G. Perelgut, M. Stanley, and K. Wong. The
software bookshelf. IBM Systems Journal,
36(4):564---593, October 1997.

[8] C. Gacek. Exploiting Domain Architectures in
Software Reuse. in Proceedings of the ACM-
SIGSOFT Symposium on Software Reusability
(SSR'95), ACM Press, Seattle, WA, 28-30
April 1995, pp. 229-232.

[9] Honeywell Corporation. What are the Benefits
of Using a DSSA? Available online at
http://www.src.honeywell.com/projects/dssa/ds
sa_benefits.html

[10] The Jigsaw server homepage. Available online
at http://www.w3.org/Jigsaw/

[11] R. Kazman, L. Bass, G. Abowd, M. Webb,
"SAAM: A Method for Analyzing the Proper-
ties Software Architectures", Proceedings of
the 16th International Conference on Software
Engineering, Sorrento, Italy, May 1994, 81-90.

[12] R. Kazman, J. Carrière. View extraction and
view fusion in architectural understanding.
Proceedings of ICSR’98, Victoria, BX, Can-
ada, June 1998.

[13] The Netcraft web server survey. Available
online at http://www.netcraft.com/survey/.

[14] The Portable BookShelf tool. Available online
at http://www.turing.cs.toronto.edu/pbs

[15] D. E. Perry and A. L. Wolf. Foundations for
the study of software architecture. ACM
SIGSOFT Software Engineering Notes,
17(4):40---52, October 1992.

[16] M. Shaw, R DeLine, D. V. Klein, T. L. Toss
and D. M. Young. Abstraction for software
architecture and tools to support them. IEEE
Transactions on Software Engineering,
21(4):314-355, Apr. 1995.

[17] M. Shaw and D. Garlan. Software Architec-
ture: Perspectives on an Emerging Discipline.
Prentice Hall Press, April 1996.

[18] M. Tanaun, “Software Architecture in the
Business Software Domain: The Descartes Ex-
perience”, In Proceedings of ISA W3, Orlando,
1998.

[19] S. Tanenbaum. Modern Operating Systems.
Prentice Hall, 1992.

[20] V. Tzerpos, R. C. Holt. A hybrid process for
recovering software architecture. In Proceed-
ings of CASCON 1996, Toronto, Canada, Nov.
1996.

[21] K. Wong, S. R. Tilley, H. A. Müller, and M.
A. D. Storey. Structural redocumentation: A
case study. IEEE Software, 11(6): 501–520,
January 1995.

