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Aspicere

‘What's in a name?
* aspi ere = “to look at” (Latin)
®* Here: aspect language for
*Characteristics:

* Prolog-based pointcut language
® Source code weaver
® Currently only statically determinable joinpoints
* Likewise no weaving within advices
*Future:
* Merging into GCC 4.0 ("heterogeneous AOP?)
* cflow, sequence, ...
*' \WWeaving inside advices
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More details

1. Parser:
* Dbtyacc (backtracking): slowwwwwww ...
* Antlr: very fast + type-checking

2. Extraction:
e XSLT + XPath (cached)

3. Joinpoint matching (Prolog):
* Backward chaining
* Instantiate joinpoints as needed
= weave-time properties
4. Weaving:
* Depends on joinpoint type
* Highly procedural
5. De-XMLify:

e XMLto source code
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Example

ReturnType advice tracing nonvold(ReturnType) on (Jp):
call (Jdp, )
&& type (Jp, ReturnType)
&& !str matches ("void",ReturnType)
{
ReturnType 1i;
/* Tracing code */
1 = proceed ()
/* Tracing code */

return 1i;

}
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Example

ReturnType advice tracing nonvoild(ReturnType) on (Jp):

call (Jdp, )
&& type (Jp, ReturnType)
&& !str matches ("void",ReturnType)
{
ReturnType 1i;
/* Tracing code */
1 = proceed ()
/* Tracing code */

return 1i;

}
mm) Aspect = normal compilation unit enhanced with advice




Bindings

\WWhat?
Logic variables which are bound and can be used freely throughout

advice code
=~ C++ template parameter
cf. Kris Gybels’ and Johan Brichau’s work, Cobble, LogicAJ, ...

How?
* Consider tuple of bindings L=(L;,...,L,)
* Instantiate advice once for all solutions for L
Why?
* Leverage power of Prolog =» reusable, robust pointcuts
e NECESSITY = no Object-class, nor template parameters
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\WWhat?

e ‘“data about data”: semantics, design decisions, conventions, ...
Why?

* automated (aspectized) evolution, aspect mining, ...
*How?

* Documentation = Javadoc, Doxygen, ...

* Separate file = property files, ...

* Language support = Java 5 annotations, C# custom attributes
® AORP introduction =» AspectJ 5

In Aspicere:

| facts & rules = ... N ...
*Future:

* What about annotations in C?
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Conclusion and questions

«Conclusion:
* Prolog facts and rules enable transparent
storing of metadata
* Aspicere’s use of Prolog-like pointcuts allows
easy exploitation of metadata

*Questions:

* Does direct language support for metadata
(a.k.a. annotations) yield better evolution
opportunities than other mechanisms?

* What about availability of metadata?
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