Metadata and aspect
evolution

Experiences in Aspicere

Bram ADAMS
Software Engineering Lab, INTEC, UGent




Aspicere

‘What's in a name?
* aspi ere = “to look at” (Latin)
®* Here: aspect language for
*Characteristics:

* Prolog-based pointcut language
® Source code weaver
® Currently only statically determinable joinpoints
* Likewise no weaving within advices
*Future:
* Merging into GCC 4.0 ("heterogeneous AOP?)
* cflow, sequence, ...
*' \WWeaving inside advices




Outline

1. Aspicere, a short introduction
2. Metadata
3. Demonstration




Outline

1. Aspicere, a short introduction




General architecture

\leaver Source-to-source transformer
preprocessor for GCC




General architecture

\leaver Source-to-source transformer
preprocessor for GCC




General architecture

\leaver Source-to-source transformer
preprocessor for GCC




More details

1. Parser:
* Dbtyacc (backtracking): slowwwwwww ...
* Antlr: very fast + type-checking

2. Extraction:
e XSLT + XPath (cached)

3. Joinpoint matching (Prolog):
* Backward chaining
* Instantiate joinpoints as needed
= weave-time properties
4. Weaving:
* Depends on joinpoint type
* Highly procedural
5. De-XMLify:

e XMLto source code




More details

1. Parser:
* Dbtyacc (backtracking): slowwwwwww ...
* Antlr: very fast + type-checking

2. Extraction:
e XSLT + XPath (cached)

3. Joinpoint matching (Prolog):
* Backward chaining
* Instantiate joinpoints as needed
= weave-time properties
4. Weaving:
* Depends on joinpoint type
* Highly procedural
5. De-XMLify:

e XMLto source code




Even more details ...




Even more details ...

int advice log() on(Jp):
N




Even more details ...

int advice log() on(Jp):
N




Even more details ...

int advice log() on(Jp):
N




Even more details ...

int advice log() on(Jp):
{0




Even more details ...

void log(thisJoinPoint* jp){

}

int advice log() on(Jp):
{0




Even more details ...

void log(thisJoinPoint* jp){

}

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){

}




Even more details ...

void log(thisJoinPoint* jp){

}

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){

}




Even more details ...

void log(thisJoinPoint* jp){

}

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){

}




Even more details ...

void log(thisJoinPoint* jp){

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){

}




Even more details ...

void log(thisJoinPoint* jp){

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){




Even more details ...

void log(thisJoinPoint* jp){

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){




Even more details ...

void log(thisJoinPoint* jp){

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){




Even more details ...

void log(thisJoinPoint* jp){

int advice log() on(Jp):
{0

void f_callee proxy(thisdJoinPoint* jp){




Example

ReturnType advice tracing nonvold(ReturnType) on (Jp):
call (Jdp, )
&& type (Jp, ReturnType)
&& !str matches ("void",ReturnType)
{
ReturnType 1i;
/* Tracing code */
1 = proceed ()
/* Tracing code */

return 1i;

}




Example

ReturnType advice tracing nonvold(ReturnType) on (Jp):
call (Jdp, )
&& type (Jp, ReturnType)
&& !str matches ("void",ReturnType)
{
ReturnType 1i;
/* Tracing code */
1 = proceed ()
/* Tracing code */

return 1i;

}




Example

ReturnType advice tracing nonvold(ReturnType) on (Jp):
call (Jdp, )
&& type (Jp, ReturnType)
&& !str matches ("void",ReturnType)
{
ReturnType 1i;
/* Tracing code */
1 = proceed ()
/* Tracing code */

return 1i;

}




Example

ReturnType advice tracing nonvoild(ReturnType) on (Jp):
call (Jdp, )
&& type (Jp, ReturnType)
&& !str matches ("void",ReturnType)
{
ReturnType 1i;
/* Tracing code */
1 = proceed ()
/* Tracing code */

return 1i;

}




Example

ReturnType advice tracing nonvoild(ReturnType) on (Jp):

call (Jdp, )
&& type (Jp, ReturnType)
&& !str matches ("void",ReturnType)
{
ReturnType 1i;
/* Tracing code */
1 = proceed ()
/* Tracing code */

return 1i;

}
mm) Aspect = normal compilation unit enhanced with advice




Bindings

\WWhat?
Logic variables which are bound and can be used freely throughout

advice code
=~ C++ template parameter
cf. Kris Gybels’ and Johan Brichau’s work, Cobble, LogicAJ, ...

How?
* Consider tuple of bindings L=(L;,...,L,)
* Instantiate advice once for all solutions for L
Why?
* Leverage power of Prolog =» reusable, robust pointcuts
e NECESSITY = no Object-class, nor template parameters




Outline

1. Aspicere, a short introduction
2. Metadata
3. Demonstration




Outline

2. Metadata




Metadata

\WWhat?

e ‘“data about data”: semantics, design decisions, conventions, ...
Why?

* automated (aspectized) evolution, aspect mining, ...
*How?

* Documentation = Javadoc, Doxygen, ...

* Separate file = property files, ...

* Language support = Java 5 annotations, C# custom attributes
® AORP introduction =» AspectJ 5

In Aspicere:

| facts & rules = ... N ...
*Future:

* What about annotations in C?




Metadata

\WWhat?

e ‘“data about data”: semantics, design decisions, conventions, ...
Why?

* automated (aspectized) evolution, aspect mining, ...
*How?

* Documentation = Javadoc, Doxygen, ...

* Separate file = property files, ...

* < Language support =» Java 5 annotations, C# custom attributes
®_ AOP introduction = AspectJ 5

In Aspicere:

| facts & rules = ... N ...
*Future:

* What about annotations in C?




Metadata

\WWhat?

e ‘“data about data”: semantics, design decisions, conventions, ...
Why?

* automated (aspectized) evolution, aspect mining, ...
*How?

* Documentation = Javadoc, Doxygen, ...

* Separate file = property files, ...

* < Language support =» Java 5 annotations, C# custom attributes
®_ AOP introduction = AspectJ 5

In Aspicere:

| facts & rules = ... N ...
*Future:

* What about annotations in C?




Metadata supply and
consumption

ReturnType advice serialize (ReturnType) on (Jp):
call (Jp,Name)
&& type (Jp, ReturnType)
&&. transaction (Name)

’ S )




Metadata supply and
consumption

ReturnType advice serialize (ReturnType) on (Jp):
call (Jp,Name)
&& type (Jp, ReturnType)
&é~.transaction (Name)

’ S )




Metadata supply and
consumption

ReturnType advice serialize (ReturnType) on (Jp):
call (Jp,Name)
&& type (Jp, ReturnType)
&é~.transaction (Name)

’ S )




Outline

1. Aspicere, a short introduction
2. Metadata
3. Demonstration




Outline

3. Demonstration




Conclusion and questions

«Conclusion:
* Prolog facts and rules enable transparent
storing of metadata
* Aspicere’s use of Prolog-like pointcuts allows
easy exploitation of metadata

*Questions:

* Does direct language support for metadata
(a.k.a. annotations) yield better evolution
opportunities than other mechanisms?

* What about availability of metadata?




Brichau, J., Mens, K. and De Volder, K. (2002). Building composable aspect-
specific languages with logic metaprogramming. In GPCE ’02: The ACM
SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering, pages 110-127. Springer-Verlag.

Gybels, K. and Brichau, J. (2003). Arranging language features for more
robust pattern-based crosscuts. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-Oriented Software Development, pages
60—69. ACM Press.

Kniesel, G., Rho, T. and Hanenberg, S. (2004). Evolvable Pattern
Implementations Need Generic Aspects. In ECOOP ‘04: Proceedings of

Workshop on Reflection, AOP and Meta-Data for Software Evolution.

Laddad, R. (2005): “AOP and metadata: A perfect match, Part 1 and 2” (IBM
developerWorks)

Lammel, R. and De Schutter, K. (2005). What does aspect-oriented
programming mean to Cobol? In AOSD ‘05: Proceedings of the 4th
international conference on Aspect-Oriented Software Development, pages
99-110 . ACM Press.

Loughran, N. and Rashid (2003). Supporting Evolution in Software using
Frame Technology and Aspect-Orientation. Workshop on Software Variability
Management, Groningen, The Netherlands.




