
Background
Previous Work
Real Example

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Comprehension of Generative Techniques

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain

Department of Computer Science
University of Nebraska at Omaha

STS 2006

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Outline

1 Background
Motivation
Project History

2 Previous Work
Software Visualization
Programming Debugging

3 Real Example
A Conceptual Overview of TL
Demo

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Motivation
Project History

Outline

1 Background
Motivation
Project History

2 Previous Work
Software Visualization
Programming Debugging

3 Real Example
A Conceptual Overview of TL
Demo

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Motivation
Project History

Inception

We want to develop tracing facilities for the HATS software
transformation system.
We want to provide users with an abstract view of the
computational model underlying HATS.
We want to use the above model to help users understand
dynamic behavior and link it to its static description.

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Motivation
Project History

Outline

1 Background
Motivation
Project History

2 Previous Work
Software Visualization
Programming Debugging

3 Real Example
A Conceptual Overview of TL
Demo

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Motivation
Project History

History of the Project

Version 0- Proof of Concept Model
What I called the Draft Version
Only shows static code
Didn’t focus on use of system resources
Finish on March 23, 2005 by Brent Kucera.

Version 1- Summer Fun
Looked at XML usage to cut back on system resources
(88% less)
Added more states than pass/fail
Had some higher-order context.
Finish on July 13, 2006

Version 2-Current "Fun"
Better way of showing trees.
Add the concept of subtree hiding.
Shows all higher order concepts
Hope to be done in December 2006

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Software Visualization
Programming Debugging

Outline

1 Background
Motivation
Project History

2 Previous Work
Software Visualization
Programming Debugging

3 Real Example
A Conceptual Overview of TL
Demo

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Software Visualization
Programming Debugging

Software Visualization
Flowcharts
Dynamic Images of Data Structures
Pretty-Printing (color and format)
Nassi-Shneiderman diagram*
Web-based systems*
parallel program visualization*
3-D Computational visualization*

* Due to time these will not be included in this talk

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Software Visualization
Programming Debugging

1947- Flowcharts
Created by Goldstein and von Neumann
Show the importance of the path of control though
execution
Very basic way of showing information

1959- Automatic Flowcharts
Habit developed a system that drew them from assembly
language or Fortran
Knuth developed a system in 1963 that also integrated
documentation to add extra depth to his flow charts
Still very basic way of showing information

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Software Visualization
Programming Debugging

Software Visualization 1968 - Images

Baecker made a debugger for the TX-2 computer that
produced images of data structures
Lead to a system for displaying data structures on a
running program
This system was live and interactive as well.
Close to something that we would need!!!

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Software Visualization
Programming Debugging

Software Visualization 1975 - pretty-printing

Ledgard cited with coming up with the idea
Describing the use of spacing, indentation, and layout to
make source code easy to read
Many system where developed for automatic
pretty-printing.

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

Software Visualization
Programming Debugging

Debugging
Pass/Fail (Any)
Inadmissible (Functional)
Logical Program Debugging
Automatic Debugging

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

Outline

1 Background
Motivation
Project History

2 Previous Work
Software Visualization
Programming Debugging

3 Real Example
A Conceptual Overview of TL
Demo

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

TL is a higher-order strategic programming language in which:

The application of rules to a term is controlled
at the rule level by: matching and conditions.
at the strategy level by: combinators.

The application of a strategy to a collection/sequence of
terms is controlled by

traversals (TDL) and iterators (FIX)

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

Specs of TL

higher-order (labelled) conditional rewrites enabling
strategies to be created dynamically
first-order matching
a library of standard traversals
user defined traversals
most standard strategic binary combinators including:
sequential composition (<;), left-biased choice (<+), and
right-biased choice (+>).
a variety of unary combinators, most notably the transient()
combinator

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

Basis A term is a strategy of type τ0.
Induction Let let lhs and rhs denote a strategy of type τ0 and τn

respectively. Then

lhs → rhs if cond

denotes a rule of type τn+1.

A strategy is an expression composed of rules, rule abstrac-
tions (i.e., labels), combinators, traversals, and iterators.

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

Program Tree
Dynamically Changing

TL Program
Rules and Strategies

(static)

Individual Rewrites

Generated Strategies
(dynamic)

Strategic Flow of Control
(dynamic)

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

An Abstract Strategic Program

rule1 : lhs1 → rhs1 if cond1

rule2 : lhs2 → rhs2 if cond2

strategy : TDL{rule1 <+ transient(rule2)}

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

Traceable Elements

rule1 : lhs1 → rhs1 if cond1

rule2 : lhs2 → rhs2 if cond2

strategy : TDL{ rule1 <+ transient(rule2) }

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

Issues

Specification of which “boxes” are of interest with respect
to a particular transformational behavior.

Display of interesting sequences of entities (i.e., boxes).

The role played by a set of entities with respect to overall
transformation.

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

Outline

1 Background
Motivation
Project History

2 Previous Work
Software Visualization
Programming Debugging

3 Real Example
A Conceptual Overview of TL
Demo

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

union : set_pgmJsetsuper union setthisK
→
set_pgmJsetsuper union setthis ⇒ setscope_thisK

if setscope_this � BUL{ lcond_tdl{get_elements}[setthis] }(setsuper)

get_elements : elementsJclassthis.value1 elements1K
→
transient(elementsJclasssuper .value1 elements3K

→
elementsJclassthis.value1 elements3K

<+

elementsJ K→ elementsJclassthis.value1K
)

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

Background
Previous Work
Real Example

A Conceptual Overview of TL
Demo

My favorite slide of them ALL

End of slides... yep scary live demo, if I have time...

...Or questions if we don’t want the live demo!

V. Winter, C. Scalzo, A. Mametjanov, B. Kucera, and A. Jain Comprehension of Generative Techniques

	Background
	Motivation
	Project History

	Previous Work
	Software Visualization
	Programming Debugging

	Real Example
	A Conceptual Overview of TL
	Demo

