
Combining Formalisms for Software Transformation
ASF+SDF Meta-Environment

Jurgen Vinju

STS — October 24, 2004

1



A sketch of the STS domain

Source Code
Run

Rephrasing

AbstractionsAbstraction

Java
COBOL

Bytecode

Documentation

Conversion

Formalization Render

HTML
UML
PDF

Generation
Presentation

Analysis

CFGs
Fact databases

DSLs

• STSs support different engineering domains:

Reverse engineering, MDA, Generative Programming, . . .

All transitions between representations of source code

• Tools/libraries/DSLs to implement parts of such transitions:

Parsing, Transformation, Relation Calculus, . . .

• Open set of DSLs instead of a general purpose STS language.

2



Formalisms in the Meta-Environment

Strings

Generalized
Parsing (SDF)

Trees Term
Rewriting (ASF)

Pretty Printing (BOX)

Facts Database
(Relation Calc)

Generic Debugging
(TIDE)

User interaction
(Meta-Environment)

3



Nice features emerge by connecting formalisms, e.g:

ASF+SDF syntax-safety, concrete syntax, layout+comment conservation

ASF+BOX flexible (semantics directed) pretty printing

SDF+Meta generic structure editing and syntax highlighting

ASF+TIDE debugger-for-free, multilevel debugging

ASF+RelCalc untangling complex analyses from tree structure

4



Question
• What about the connection between trafo and analysis formalisms?

Either completely integrate (e.g. embracing Prolog), or . . .

Borrow features (e.g. add multiset datatype), or . . .

Keep a loose coupling, and formalize the interaction.

• How to connect rewriting tools to analysis tools:

System: Type system integration & data marshalling

User: Reusable Fact Extractions, and Design patterns for FEs.

5


