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A sketch of the STS domain
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• STSs support different engineering domains:

Reverse engineering, MDA, Generative Programming, . . .

All transitions between representations of source code

• Tools/libraries/DSLs to implement parts of such transitions:

Parsing, Transformation, Relation Calculus, . . .

• Open set of DSLs instead of a general purpose STS language.
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Formalisms in the Meta-Environment
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Nice features emerge by connecting formalisms, e.g:

ASF+SDF syntax-safety, concrete syntax, layout+comment conservation

ASF+BOX flexible (semantics directed) pretty printing

SDF+Meta generic structure editing and syntax highlighting

ASF+TIDE debugger-for-free, multilevel debugging

ASF+RelCalc untangling complex analyses from tree structure
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Question
• What about the connection between trafo and analysis formalisms?

Either completely integrate (e.g. embracing Prolog), or . . .

Borrow features (e.g. add multiset datatype), or . . .

Keep a loose coupling, and formalize the interaction.

• How to connect rewriting tools to analysis tools:

System: Type system integration & data marshalling

User: Reusable Fact Extractions, and Design patterns for FEs.
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