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Introduction

This tutorial is in two parts. It will cover:

1. An overview of functional programming with
dependent types, using the language IDRIS.

2. Embedded Domain Specific Language (EDSL)
implementation.
� A type safe interpreter
� Network protocols as EDSLs
� Code generation via specialisation
� Performance data
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Idris

IDRIS is an experimental purely functional language with
dependent types (http://idris-lang.org/).

� Compiled, via C, with some optimisations.

� Loosely based on Haskell, similarities with Agda,
Epigram.

� Available from Hackage:
� cabal install idris

� Tutorial notes online:
� http://idris-lang.org/tutorial
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dependent types (http://idris-lang.org/).

� Compiled, via C, with some optimisations.

� Loosely based on Haskell, similarities with Agda,
Epigram.

� Available from Hackage:
� cabal install idris

� Tutorial notes online:
� http://idris-lang.org/tutorial

� “Research quality software”
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Some Idris Features

IDRIS has several features to help support EDSL
implementation. . .

� Full-Spectrum Dependent Types

� Compile-time evaluation

� Efficient executable code, via C
� Unification (type/argument inference)

� Plugin decision procedures

� Overloadable do-notation, idiom brackets
� Simple foreign function interface

. . . and I try to be responsive to feature requests!
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Dependent Types in Idris

Dependent types allow types to be parameterised by
values, giving a more precise description of data.
Some data types in Idris:

data Nat = O | S Nat;

infixr 5 :: ; -- Define an infix operator

data Vect : Set -> Nat -> Set where -- List with size

VNil : Vect a O

| (::) : a -> Vect a k -> Vect a (S k);

We say that Vect is parameterised by the element type
and indexed by its length.
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Functions

The type of a function over vectors describes invariants
of the input/output lengths.

e.g. the type of vAdd expresses that the output length is
the same as the input length:

vAdd : Vect Int n -> Vect Int n -> Vect Int n;

vAdd VNil VNil = VNil;

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys;

The type checker works out the type of n implicitly, from
the type of Vect.
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Input and Output

I/O in Idris works in a similar way to Haskell. e.g. readVec
reads user input and adds to an accumulator:

readVec : Vect Int n -> IO ( p ** Vect Int p );

readVec xs = do { putStr "Number: ";

val <- getInt;

if val == -1 then return <| _, xs |>

else (readVec (val :: xs));

};

The program returns a dependent pair, which pairs a
value with a predicate on that value.

GPCE/SLE, Eindhoven, 10/10/10 – p.7/36



The with Rule

The with rule allows dependent pattern matching on
intermediate values:
vfilter : (a -> Bool) -> Vect a n -> (p ** Vect a p);

vfilter f VNil = <| _, VNil |>;

vfilter f (x :: xs) with (f x, vfilter xs f) {

| (True, <| _, xs’ |>) = <| _, x :: xs’ |>;

| (False, <| _, xs’ |>) = <| _, xs’ |>;

}

The underscore _ means either match anything (on the
left of a clause) or infer a value (on the right).
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Libraries

Libraries can be imported via include "lib.idr". All
programs automatically import prelude.idr which
includes, among other things:

� Primitive types Int, String and Char, plus Nat, Bool

� Tuples, dependent pairs.

� Fin, the finite sets.
� List, Vect and related functions.
� Maybe and Either

� The IO monad, and foreign function interface.
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A Type Safe Interpreter

A common introductory example to dependent types is
the type safe interpreter. The pattern is:

� Define a data type which represents the language
and its typing rules.

� Write an interpreter function which evaluates this
data type directly.

[demo: interp.idr]
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A Type Safe Interpreter

Notice that when we run the interpreter on functions
without arguments, we get a translation into Idris:

Idris> interp Empty test

\ x : Int . \ x0 : Int . x + x0

Idris> interp Empty double

\ x : Int . x+x
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A Type Safe Interpreter

We have partially evaluated these programs. If we can
do this reliably, and have reasonable control over, e.g.,
inlining, then we have a recipe for efficient verified EDSL
implementation:

1. Design an EDSL which guarantees the resource
constraints, represented as a dependent type

2. Implement the interpreter for that EDSL

3. Specialise the interpreter for concrete EDSL
programs, using a partial evaluator
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Resource Usage Verification

We have applied the type safe interpreter approach to a
family of domain specific languages with resource usage
properties, in their type:

� File handling

� Memory usage

� Concurrency (locks)

� Network protocol state

As an example, I will outline the construction of a DSL for
a simple network transport protocol.
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Example — Network Protocols

Protocol correctness can be verified by model-checking a
finite-state machine. However:

� There may be a large number of states and
transitions.

� The model is needed in addition to the
implementation.

Model-checking is therefore not self-contained. It can
verify a protocol, but not its implementation.
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Example — Network Protocols

In our approach we construct a self-contained
domain-specific framework in a dependently-typed
language.

� We can express correctness properties in the
implementation itself.

� We can express the precise form of data and ensure
it is validated.

� We aim for Correctness By Construction.
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ARQ

Our simple transport protocol:

� Automatic Repeat Request (ARQ)

� Separate sender and receiver

� State
� Session state (status of connection)
� Transmission state (status of transmitted data)
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Session State
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Transmission State
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Session Management

� START — initiate a session
� START_RECV_ACK

— wait for the receiver to be ready

� END — close a session
� END_RECV_ACK

— wait for the receiver to close
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Session Management

� START — initiate a session
� START_RECV_ACK

— wait for the receiver to be ready

� END — close a session
� END_RECV_ACK

— wait for the receiver to close

When are these operations valid? What is their effect on
the state? How do we apply them correctly?
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Session Management

We would like to express contraints on these operations, describing
when they are valid, e.g.:

Command Precondition Postcondition

START CLOSED OPENING

START_RECV_ACK OPENING OPEN (if ACK received)

OPENING (if nothing received)

END OPEN CLOSING

END_RECV_ACK CLOSING CLOSED (if ACK received)

CLOSED (if nothing received)
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Sessions, Dependently Typed

How do we express our session state machine?

� Make each transition an operation in a DSL.

� Define the abstract syntax of the DSL language as a
dependent type.

� Implement an interpreter for the abstract syntax.

� Specialise the interpreter for the ARQ
implementation.

This is the recipe we followed for the well typed
interpreter . . .
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Session State, Formally

State carries the session state, i.e. states in the Finite
State Machine, plus additional data:

data State = CLOSED

| OPEN TState -- transmission state

| CLOSING

| OPENING

TState carries the transmission state. An open
connection is either waiting for an ACK or ready to send
the next packet.

data TState = Waiting Seq -- seq. no.

| Ready Seq -- seq. no.
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Network Protocol EDSL

data ARQ : State -> State -> Set -> Set where
START : ARQ CLOSED OPENING ()

| START_RECV_ACK
: (if_ok : ARQ (OPEN (Ready First)) st’ t) ->

(on_timeout : ARQ OPENING st’ t) ->
ARQ OPENING st’ t

| END : ARQ (OPEN (Ready n)) CLOSING ()
| END_RETRY

: ARQ CLOSING CLOSING ()
| END_RECV_ACK

: (if_ok: ARQ CLOSED st’ t) ->
(on_timeout: ARQ CLOSING st’ t) ->

ARQ CLOSING st’ t
...
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Network Protocol EDSL

data ARQ : State -> State -> Set -> Set where
...

| WITHIN : Time -> (action : ARQ st st’ t) ->
(on_timeout : ARQ st st’ t) ->
ARQ st st’ t

| IF : Bool -> (if_true : ARQ st st’ t) ->
(if_false : ARQ st st’ t) ->
ARQ st st’ t

| RETURN : t -> ARQ st st t
| BIND : ARQ st st’ t ->

(k : t -> ARQ st’ st’’ t’) ->
ARQ st st’’ t’;
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Network Protocol EDSL Interpreter

The interpreter for ARQ is parameterised over the actual
network data, and keeps track of time to check for
timeouts.
params (s:Socket, host:String, port:Int) {

interpBy : Time -> (prog:ARQ st st’ t) [static] ->

IO (Maybe t);

...

interpBy t END

= checkTime t (sendPacket s host port (CTL S_BYE));

...

}

checkTime : Time -> IO t -> IO (Maybe t);
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Sending Packets

An example program, which opens a connection, sends
a batch of packets, then closes it, within i microseconds:

sendNumber : Time -> Nat -> ARQ CLOSED CLOSED ();
sendNumber i tot

= WITHIN i
(do { open_connection 500000;

session 500000 O tot First;
close_connection 500000;

(TRACE "Timed out");

The types ensure that the protocol is followed; any
protocol violation is a type error.
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Sending Packets

The following function sends tot packets, with no
payload, with timeout i per packet.

session : Time -> Nat -> Nat -> (sq:Seq) ->
ARQ (OPEN (Ready sq)) CLOSING ();

session i n tot sq =
IF (n == tot)

END
(do { TRACE ("Sending " ++ showNat n);

send sq i;
session i (S n) tot (Next sq); });
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Sending Packets (Specialised)

Partial evaluation of the ARQ interpreter with this program
yields:

sessionS : Socket -> String -> Int -> Time ->

Time -> Nat -> Nat -> Seq -> IO (Maybe ());

sessionS s h p t i n tot sq = do {

checkTime t (if (n == tot)

then checkTime t (sendPacket s h p (CTL S_BYE))

else do { putStr ("Sending " ++ showNat n);

checkTime t (sendS s h p t sq i);

checkTime t

(sessionS s h p t (S n) i tot (Next sq))); };
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Results

We have implemented a number of examples using the
DSL approach, and compared the performance of the
interpreted and specialised versions with equivalent
programs in C and Java.

� File handling
� Copying a file
� Processing file contents (e.g. reading, sorting,

writing)

� Functional language implementation
� Well-typed interpreter extended with lists
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Results

Run time, in seconds of user time, for a variety of DSL
programs:

Program Spec Gen Java C
fact1 0.017 8.598 0.081 0.007
fact2 1.650 877.2 1.937 0.653

sumlist 3.181 1148.0 4.413 0.346
copy 0.589 1.974 1.770 0.564

copy_dynamic 0.507 1.763 1.673 0.512
copy_store 1.705 7.650 3.324 1.159
sort_file 5.205 7.510 2.610 1.728

ARQ 0.751 0.990 — —
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Conclusions

IDRIS’s type system occupies a “sweet spot” where
partial evaluation is particularly effective.

� Tagless interpreters

� Existing evaluator; only minor changes required

� Comparable performance to hand written C/Java . . .
� . . . but verified resource usage, via EDSLs

This is not unique to IDRIS!

� Techniques equally applicable to Agda, Coq, Guru,
Trellys, Haskell (with GADTs). . .
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Conclusions

Lots of interesting (resource related) problems fit into the
EDSL framework:

� Concurrency (managing locks)

� Time/space usage
� Important for hard real-time systems

� Power consumption

� AI/Planning (valid plan guaranteed to reach a goal)

� Security (managing access to resources)
� . . .
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� “Scrapping your Inefficient Engine: using Partial Evaluation to
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In ICFP 2010.

� “Domain Specific Languages (DSLs) for Network Protocols”
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