
Embedded Domain Specific Language
Implementation using Dependent

Types
Edwin Brady

eb@cs.st-andrews.ac.uk

University of St Andrews

GPCE/SLE, Eindhoven, 10/10/10

GPCE/SLE, Eindhoven, 10/10/10 – p.1/36

Introduction

This tutorial is in two parts. It will cover:

1. An overview of functional programming with
dependent types, using the language IDRIS.

2. Embedded Domain Specific Language (EDSL)
implementation.
� A type safe interpreter
� Network protocols as EDSLs
� Code generation via specialisation
� Performance data

GPCE/SLE, Eindhoven, 10/10/10 – p.2/36

Idris

IDRIS is an experimental purely functional language with
dependent types (http://idris-lang.org/).

� Compiled, via C, with some optimisations.

� Loosely based on Haskell, similarities with Agda,
Epigram.

� Available from Hackage:
� cabal install idris

� Tutorial notes online:
� http://idris-lang.org/tutorial

GPCE/SLE, Eindhoven, 10/10/10 – p.3/36

http://idris-lang.org/
http://idris-lang.org/tutorial

Idris

IDRIS is an experimental purely functional language with
dependent types (http://idris-lang.org/).

� Compiled, via C, with some optimisations.

� Loosely based on Haskell, similarities with Agda,
Epigram.

� Available from Hackage:
� cabal install idris

� Tutorial notes online:
� http://idris-lang.org/tutorial

� “Research quality software”

GPCE/SLE, Eindhoven, 10/10/10 – p.3/36

http://idris-lang.org/
http://idris-lang.org/tutorial

Some Idris Features

IDRIS has several features to help support EDSL
implementation. . .

� Full-Spectrum Dependent Types

� Compile-time evaluation

� Efficient executable code, via C
� Unification (type/argument inference)

� Plugin decision procedures

� Overloadable do-notation, idiom brackets
� Simple foreign function interface

. . . and I try to be responsive to feature requests!
GPCE/SLE, Eindhoven, 10/10/10 – p.4/36

Dependent Types in Idris

Dependent types allow types to be parameterised by
values, giving a more precise description of data.
Some data types in Idris:

data Nat = O | S Nat;

infixr 5 :: ; -- Define an infix operator

data Vect : Set -> Nat -> Set where -- List with size

VNil : Vect a O

| (::) : a -> Vect a k -> Vect a (S k);

We say that Vect is parameterised by the element type
and indexed by its length.

GPCE/SLE, Eindhoven, 10/10/10 – p.5/36

Functions

The type of a function over vectors describes invariants
of the input/output lengths.

e.g. the type of vAdd expresses that the output length is
the same as the input length:

vAdd : Vect Int n -> Vect Int n -> Vect Int n;

vAdd VNil VNil = VNil;

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys;

The type checker works out the type of n implicitly, from
the type of Vect.

GPCE/SLE, Eindhoven, 10/10/10 – p.6/36

Input and Output

I/O in Idris works in a similar way to Haskell. e.g. readVec
reads user input and adds to an accumulator:

readVec : Vect Int n -> IO (p ** Vect Int p);

readVec xs = do { putStr "Number: ";

val <- getInt;

if val == -1 then return <| _, xs |>

else (readVec (val :: xs));

};

The program returns a dependent pair, which pairs a
value with a predicate on that value.

GPCE/SLE, Eindhoven, 10/10/10 – p.7/36

The with Rule

The with rule allows dependent pattern matching on
intermediate values:
vfilter : (a -> Bool) -> Vect a n -> (p ** Vect a p);

vfilter f VNil = <| _, VNil |>;

vfilter f (x :: xs) with (f x, vfilter xs f) {

| (True, <| _, xs’ |>) = <| _, x :: xs’ |>;

| (False, <| _, xs’ |>) = <| _, xs’ |>;

}

The underscore _ means either match anything (on the
left of a clause) or infer a value (on the right).

GPCE/SLE, Eindhoven, 10/10/10 – p.8/36

Libraries

Libraries can be imported via include "lib.idr". All
programs automatically import prelude.idr which
includes, among other things:

� Primitive types Int, String and Char, plus Nat, Bool

� Tuples, dependent pairs.

� Fin, the finite sets.
� List, Vect and related functions.
� Maybe and Either

� The IO monad, and foreign function interface.

GPCE/SLE, Eindhoven, 10/10/10 – p.9/36

A Type Safe Interpreter

A common introductory example to dependent types is
the type safe interpreter. The pattern is:

� Define a data type which represents the language
and its typing rules.

� Write an interpreter function which evaluates this
data type directly.

[demo: interp.idr]

GPCE/SLE, Eindhoven, 10/10/10 – p.10/36

A Type Safe Interpreter

Notice that when we run the interpreter on functions
without arguments, we get a translation into Idris:

Idris> interp Empty test

\ x : Int . \ x0 : Int . x + x0

Idris> interp Empty double

\ x : Int . x+x

GPCE/SLE, Eindhoven, 10/10/10 – p.11/36

A Type Safe Interpreter

We have partially evaluated these programs. If we can
do this reliably, and have reasonable control over, e.g.,
inlining, then we have a recipe for efficient verified EDSL
implementation:

1. Design an EDSL which guarantees the resource
constraints, represented as a dependent type

2. Implement the interpreter for that EDSL

3. Specialise the interpreter for concrete EDSL
programs, using a partial evaluator

GPCE/SLE, Eindhoven, 10/10/10 – p.12/36

Resource Usage Verification

We have applied the type safe interpreter approach to a
family of domain specific languages with resource usage
properties, in their type:

� File handling

� Memory usage

� Concurrency (locks)

� Network protocol state

As an example, I will outline the construction of a DSL for
a simple network transport protocol.

GPCE/SLE, Eindhoven, 10/10/10 – p.13/36

Example — Network Protocols

Protocol correctness can be verified by model-checking a
finite-state machine. However:

� There may be a large number of states and
transitions.

� The model is needed in addition to the
implementation.

Model-checking is therefore not self-contained. It can
verify a protocol, but not its implementation.

GPCE/SLE, Eindhoven, 10/10/10 – p.14/36

Example — Network Protocols

In our approach we construct a self-contained
domain-specific framework in a dependently-typed
language.

� We can express correctness properties in the
implementation itself.

� We can express the precise form of data and ensure
it is validated.

� We aim for Correctness By Construction.

GPCE/SLE, Eindhoven, 10/10/10 – p.15/36

ARQ

Our simple transport protocol:

� Automatic Repeat Request (ARQ)

� Separate sender and receiver

� State
� Session state (status of connection)
� Transmission state (status of transmitted data)

GPCE/SLE, Eindhoven, 10/10/10 – p.16/36

Session State

GPCE/SLE, Eindhoven, 10/10/10 – p.17/36

Transmission State

GPCE/SLE, Eindhoven, 10/10/10 – p.18/36

Session Management

� START — initiate a session
� START_RECV_ACK

— wait for the receiver to be ready

� END — close a session
� END_RECV_ACK

— wait for the receiver to close

GPCE/SLE, Eindhoven, 10/10/10 – p.19/36

Session Management

� START — initiate a session
� START_RECV_ACK

— wait for the receiver to be ready

� END — close a session
� END_RECV_ACK

— wait for the receiver to close

When are these operations valid? What is their effect on
the state? How do we apply them correctly?

GPCE/SLE, Eindhoven, 10/10/10 – p.19/36

Session Management

We would like to express contraints on these operations, describing
when they are valid, e.g.:

Command Precondition Postcondition

START CLOSED OPENING

START_RECV_ACK OPENING OPEN (if ACK received)

OPENING (if nothing received)

END OPEN CLOSING

END_RECV_ACK CLOSING CLOSED (if ACK received)

CLOSED (if nothing received)

GPCE/SLE, Eindhoven, 10/10/10 – p.20/36

Sessions, Dependently Typed

How do we express our session state machine?

� Make each transition an operation in a DSL.

� Define the abstract syntax of the DSL language as a
dependent type.

� Implement an interpreter for the abstract syntax.

� Specialise the interpreter for the ARQ
implementation.

This is the recipe we followed for the well typed
interpreter . . .

GPCE/SLE, Eindhoven, 10/10/10 – p.21/36

Session State, Formally

State carries the session state, i.e. states in the Finite
State Machine, plus additional data:

data State = CLOSED

| OPEN TState -- transmission state

| CLOSING

| OPENING

TState carries the transmission state. An open
connection is either waiting for an ACK or ready to send
the next packet.

data TState = Waiting Seq -- seq. no.

| Ready Seq -- seq. no.

GPCE/SLE, Eindhoven, 10/10/10 – p.22/36

Network Protocol EDSL

data ARQ : State -> State -> Set -> Set where
START : ARQ CLOSED OPENING ()

| START_RECV_ACK
: (if_ok : ARQ (OPEN (Ready First)) st’ t) ->

(on_timeout : ARQ OPENING st’ t) ->
ARQ OPENING st’ t

| END : ARQ (OPEN (Ready n)) CLOSING ()
| END_RETRY

: ARQ CLOSING CLOSING ()
| END_RECV_ACK

: (if_ok: ARQ CLOSED st’ t) ->
(on_timeout: ARQ CLOSING st’ t) ->

ARQ CLOSING st’ t
...

GPCE/SLE, Eindhoven, 10/10/10 – p.23/36

Network Protocol EDSL

data ARQ : State -> State -> Set -> Set where
...

| WITHIN : Time -> (action : ARQ st st’ t) ->
(on_timeout : ARQ st st’ t) ->
ARQ st st’ t

| IF : Bool -> (if_true : ARQ st st’ t) ->
(if_false : ARQ st st’ t) ->
ARQ st st’ t

| RETURN : t -> ARQ st st t
| BIND : ARQ st st’ t ->

(k : t -> ARQ st’ st’’ t’) ->
ARQ st st’’ t’;

GPCE/SLE, Eindhoven, 10/10/10 – p.24/36

Network Protocol EDSL Interpreter

The interpreter for ARQ is parameterised over the actual
network data, and keeps track of time to check for
timeouts.
params (s:Socket, host:String, port:Int) {

interpBy : Time -> (prog:ARQ st st’ t) [static] ->

IO (Maybe t);

...

interpBy t END

= checkTime t (sendPacket s host port (CTL S_BYE));

...

}

checkTime : Time -> IO t -> IO (Maybe t);

GPCE/SLE, Eindhoven, 10/10/10 – p.25/36

Sending Packets

An example program, which opens a connection, sends
a batch of packets, then closes it, within i microseconds:

sendNumber : Time -> Nat -> ARQ CLOSED CLOSED ();
sendNumber i tot

= WITHIN i
(do { open_connection 500000;

session 500000 O tot First;
close_connection 500000;

(TRACE "Timed out");

The types ensure that the protocol is followed; any
protocol violation is a type error.

GPCE/SLE, Eindhoven, 10/10/10 – p.26/36

Sending Packets

The following function sends tot packets, with no
payload, with timeout i per packet.

session : Time -> Nat -> Nat -> (sq:Seq) ->
ARQ (OPEN (Ready sq)) CLOSING ();

session i n tot sq =
IF (n == tot)

END
(do { TRACE ("Sending " ++ showNat n);

send sq i;
session i (S n) tot (Next sq); });

GPCE/SLE, Eindhoven, 10/10/10 – p.27/36

Sending Packets (Specialised)

Partial evaluation of the ARQ interpreter with this program
yields:

sessionS : Socket -> String -> Int -> Time ->

Time -> Nat -> Nat -> Seq -> IO (Maybe ());

sessionS s h p t i n tot sq = do {

checkTime t (if (n == tot)

then checkTime t (sendPacket s h p (CTL S_BYE))

else do { putStr ("Sending " ++ showNat n);

checkTime t (sendS s h p t sq i);

checkTime t

(sessionS s h p t (S n) i tot (Next sq))); };

GPCE/SLE, Eindhoven, 10/10/10 – p.28/36

Results

We have implemented a number of examples using the
DSL approach, and compared the performance of the
interpreted and specialised versions with equivalent
programs in C and Java.

� File handling
� Copying a file
� Processing file contents (e.g. reading, sorting,

writing)

� Functional language implementation
� Well-typed interpreter extended with lists

GPCE/SLE, Eindhoven, 10/10/10 – p.29/36

Results

Run time, in seconds of user time, for a variety of DSL
programs:

Program Spec Gen Java C
fact1 0.017 8.598 0.081 0.007
fact2 1.650 877.2 1.937 0.653

sumlist 3.181 1148.0 4.413 0.346
copy 0.589 1.974 1.770 0.564

copy_dynamic 0.507 1.763 1.673 0.512
copy_store 1.705 7.650 3.324 1.159
sort_file 5.205 7.510 2.610 1.728

ARQ 0.751 0.990 — —

GPCE/SLE, Eindhoven, 10/10/10 – p.30/36

Results

Run time, in seconds of user time, for a variety of DSL
programs:

Program Spec Gen Java C
fact1 0.017 8.598 0.081 0.007
fact2 1.650 877.2 1.937 0.653

sumlist 3.181 1148.0 4.413 0.346
copy 0.589 1.974 1.770 0.564

copy_dynamic 0.507 1.763 1.673 0.512
copy_store 1.705 7.650 3.324 1.159
sort_file 5.205 7.510 2.610 1.728

ARQ 0.751 0.990 — —

GPCE/SLE, Eindhoven, 10/10/10 – p.31/36

Results

Run time, in seconds of user time, for a variety of DSL
programs:

Program Spec Gen Java C
fact1 0.017 8.598 0.081 0.007
fact2 1.650 877.2 1.937 0.653

sumlist 3.181 1148.0 4.413 0.346
copy 0.589 1.974 1.770 0.564

copy_dynamic 0.507 1.763 1.673 0.512
copy_store 1.705 7.650 3.324 1.159
sort_file 5.205 7.510 2.610 1.728

ARQ 0.751 0.990 — —

GPCE/SLE, Eindhoven, 10/10/10 – p.32/36

Conclusions

IDRIS’s type system occupies a “sweet spot” where
partial evaluation is particularly effective.

� Tagless interpreters

� Existing evaluator; only minor changes required

� Comparable performance to hand written C/Java . . .
� . . . but verified resource usage, via EDSLs

This is not unique to IDRIS!

� Techniques equally applicable to Agda, Coq, Guru,
Trellys, Haskell (with GADTs). . .

GPCE/SLE, Eindhoven, 10/10/10 – p.33/36

Conclusions

Lots of interesting (resource related) problems fit into the
EDSL framework:

� Concurrency (managing locks)

� Time/space usage
� Important for hard real-time systems

� Power consumption

� AI/Planning (valid plan guaranteed to reach a goal)

� Security (managing access to resources)
� . . .

GPCE/SLE, Eindhoven, 10/10/10 – p.34/36

Related Work

� “Parameterised Notions of Computation”
— Robert Atkey,

In MSFP 2006

� “The Power of Pi”
— N. Oury and W. Swierstra,

In ICFP 2008

� “Security Typed Programming Within Dependently Typed
Programming”
— J. Morgenstern and D. Licata,

In ICFP 2010

GPCE/SLE, Eindhoven, 10/10/10 – p.35/36

Further Reading

� “Scrapping your Inefficient Engine: using Partial Evaluation to
Improve Domain-Specific Language Implementation”
— E. Brady and K. Hammond,

In ICFP 2010.

� “Domain Specific Languages (DSLs) for Network Protocols”
— S. Bhatti, E. Brady, K. Hammond and J. McKinna,

In Next Generation Network Architecture 2009.

� “IDRIS — Systems Programming meets Full Dependent Types”
— E. Brady, draft 2010.

� http://www.cs.st-andrews.ac.uk/~eb/hacking/ARQdsl.html

— ARQ DSL implementation

� http://idris-lang.org/tutorial/

GPCE/SLE, Eindhoven, 10/10/10 – p.36/36

http://www.cs.st-andrews.ac.uk/~eb/hacking/ARQdsl.html
http://idris-lang.org/tutorial/

	Introduction
	Idris
	Some Idris Features
	Dependent Types in Idris
	Functions
	Input and Output
	The 	SY {with} Rule
	Libraries
	A Type Safe Interpreter
	A Type Safe Interpreter
	A Type Safe Interpreter
	Resource Usage Verification
	Example --- Network Protocols
	Example --- Network Protocols
	ARQ
	Session State
	Transmission State
	Session Management
	Session Management
	Sessions, Dependently Typed
	Session State, Formally
	Network Protocol EDSL
	Network Protocol EDSL
	Network Protocol EDSL Interpreter
	Sending Packets
	Sending Packets
	Sending Packets (Specialised)
	Results
	Results
	Results
	Results
	Conclusions
	Conclusions
	Related Work
	Further Reading

